skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lussem, Bjorn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Jurchescu, Oana D.; McCulloch, Iain (Ed.)
  2. Organic Permeable Base Transistors (OPBTs) reach a very high transit frequency and large on-state currents. However, for a later commercial application of this technology, a high operational stability is essential as well. Here, the stability of OPBTs during continuous cycling and during base bias stress is discussed. It is observed that the threshold voltage of these transistors shifts toward more positive base voltages if stressed by applying a constant potential to the base electrode for prolonged times. With the help of a 2D device simulation, it is proposed that the observed instabilities are due to charges that are trapped on top of an oxide layer formed around the base electrode. These charges are thermally released after removing the stress, and the device reaches its initial performance after around 24–48 h. 
    more » « less
  3. Organic Electrochemical Transistors are versatile sensors that became essential for the field of organic bioelectronics. However, despite their importance, an incomplete understanding of their working mechanism is currently precluding a targeted design of Organic Electrochemical Transistors and it is still challenging to formulate precise design rules guiding materials development in this field. Here, it is argued that current capacitive device models neglect lateral ion currents in the transistor channel and therefore fail to describe the equilibrium state of Organic Electrochemical Transistors. An improved model is presented, which shows that lateral ion currents lead to an accumulation of ions at the drain contact, which significantly alters the transistor behavior. Overall, these results show that a better understanding of the interface between the organic semiconductor and the drain electrode is needed to reach a full understanding of Organic Electrochemical Transistors. 
    more » « less
  4. Doping organic semiconductors has become a key technology to increase the performance of organic light-emitting diodes, solar cells, or field-effect transistors (OFETs). However, doping can be used not only to optimize these devices but also to enable new design principles as well. Here, a novel type of OFET is reported—the vertical organic tunnel field-effect transistor. Based on heterogeneously doped drain and source contacts, charge carriers are injected from an n-doped source electrode into the channel by Zener tunneling and are transported toward a p-doped drain electrode. The working mechanism of these transistors is discussed with the help of a tunnel model that takes energetic broadening of transport states in organic semiconductors and roughness of organic layers into account. The proposed device principle opens new ways to optimize OFETs. It is shown that the Zener junction included between the source and drain of the vertical organic tunnel field-effect transistors suppresses short channel effects and improves the saturation of vertical OFETs. 
    more » « less